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Abstract

The REBOUND adaptation framework organizes a collection of adaptation tactics in a way that they can be
selected based on the components available for adaptation. Adaptation tactics are specified formally in terms
of the relationship between the component to be adapted and the resulting adapted component. The tactic
specifications are used as matching conditions for specification-based component retrieval, creating a
``retrieval for adaptation'' scenario. The results of specification matching are used to guide component
adaptation. Several examples illustrate how the framework guides component and tactic selection and how
basic tactics are composed to form more powerful tactics.
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1 Background

The Automated Software Engineering Group at NASA Ames Research Center focuses on the development
and application of formal methods for synthesis, verification and reuse of safety and mission critical
software. The group's program synthesis work is based on the construction of programs from reusable
component libraries using automated theorem proving techniques [14, 13]. Our verification research
investigates the application of formal methods (both model checking and theorem proving) to verify reusable
software architectures and design patterns for AI-based autonomous systems and concurrent real-time
systems [21]. The addition of Bernd Fischer and Johann Schumann [5, 6, 7, 25] as well as Jonathan
Whittle [28, 29] in late 1998 will position the group to make strong advances in the application of formal
methods to software reuse.

 

2 Position

Evidence of the need for adaptation in software reuse is evident in the wide spread programming language
support of data-type generalization and parameterization. These methods take a specialization approach to
reuse, where a component is designed abstractly and specialized at reuse time (either statically or
dynamically). While these specialization techniques have permitted the development of reusable code, they
focus on implementation level artifacts. Therefore, these techniques cannot avoid the limitations of concrete
component reuse as described by Biggerstaff [3]: the reuse of small generic components does not provide
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enough functionality to impact the cost of a system, while the specialization required to construct a large
component or framework limits its applicability. This causes a library scalability problem, where the size of
the library must grow combinatorially as additional features are supported [3].

Biggerstaff provides a convincing argument that solving the library scalability problem requires moving from
the specialization model of reuse to a generational or compositional model of reuse. (Similar views are
expressed by Batory [2] and Kiczales [12].) The model Biggerstaff suggests is a library of factors that are
combined together to result in the component to be used. Current technology supports a layers of abstraction
(LOA) approach to this solution, where factors are implemented as functions and composition is done using
run-time function calls [2]. Biggerstaff discredits the use of module interconnection languages because they
prevent optimization by placing boundaries between components.

In the context of architecture description languages, module or component boundaries are not necessarily just
conceptual boundaries, but may correspond to physical boundaries in the system. In dynamic
architectures [17], component interactions are not known until run-time, removing the possibility of static
optimization even between homogeneous, localized components. It follows that an LOA-optimization
approach to combining subcomponents into a larger system is inappropriate in the context of software
architecture. Factored reuse at the architecture level requires a more elegant solution to component
composition, one that does not require integration of implementation level artifacts. The loss in efficiency is
offset by the fact that architecture level compositions can be more powerful than those available from an
LOA approach.

 

3 Approach

We have developed a framework for automated component adaptation and composition , dubbed REBOUND
(REuse Based On UNDerstanding). The function and interface aspects of a component are separated and then
composed at reuse time to generate a component with the correct function and interface combination.
Composition takes the form of adaptation, supported by tactic specifications that describe structures used to
adapt components. The tactic specifications are used to generate matching conditions that describe adaptable
components. Specification-based component retrieval [5, 20] can then identify adaptable components using
these matching conditions.

The goal of the adaptation framework is to guide the search for a solution based on existing library
components. This search is over the space of all possible designs that can be constructed from the
components and tactics in the library. The exploration of the search space must be limited due to the
potentially large number of architecture and component combinations. The framework guides the search to
avoid designs that are incorrect or require components not in the library.

We distinguish between several kinds of adaptation within REBOUND:

Type Adaptation - specialization of an abstract type or behavioral type substitution.

Interface Adaptation - alters the interaction style of the component.

Behavior Adaptation - changes the function of the component either by composing it with other components
or replacing a subcomponent.

The effects of adaptation tactics are specified in terms of formal relationships between the component to be
adapted and the resulting adapted component. It is possible that a component may require any combination of
these three kinds of adaptations. This is supported by composing tactic specifications to make more powerful
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tactics.

Type adaptation

Type adaptation occurs when an abstract or generic type is specialized. This kind of adaptation can normally
be identified and carried out by signature matching tools [30]. It must be considered separately here, because
of the potential to combine type adaptation with other kinds of adaptation.

Interface Adaptation

Interface adaptation determines how the component to be reused is bound to the problem specification.
Interface adaptations range from simple type conversions to wrappers that encapsulate sophisticated control
structures. A wrapper is an architecture that contains one component. By altering a component's interface, it
changes the way that it interacts with its environment. One kind of interface adaptation is type
conversion [24]. This differs from type substitution in that the source and destination type are not
(necessarily) related by the type hierarchy. A type conversion operator is used to convert between the two
types.

Matching conditions for component retrieval can be generated by specializing a generic Type Conversion
Wrapper specification with specific type conversion operators. In the REBOUND framework, common type
conversion operators are identified during domain analysis. The more general case of finding or synthesizing
a component that implements the proper type conversion is covered by behavior adaptation. The concept of
the type conversion wrapper can be generalized to specify more powerful wrappers. If fact, any architecture
specification that has all but one component instantiated can be considered a wrapper specification. However,
for the purposes of component adaptation, it is important to stick to simple, intuitive tactics to: 1) increase
their potential to be reused and 2) simplify the process of selecting and specifying wrappers during domain
analysis.

Behavior Adaptation

Behavioral adaptation tactics are applied in a incremental and constructive manner, using the architectural
constraints as a guide while selecting components to plug in [19]. Maintaining the validity of the constraints
with each component selection, guarantees a correctly instantiated system.

The goal of selecting architectures for behavior adaptation is to have a potential adaptation strategy for a
range of component matching conditions. The choice of specific architectures should be driven by common
problem decomposition tactics from the application domain. For example, sequential composition of filters is
a common way to break up a digital signal processing system.
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Figure 1: Lattice of Specification Matches Used for Behavior Adaptation

The lattice of specification matches used to guide behavior adaptation is shown in Figure 1. This lattice is
extended from the one described in our previous work [19, 20]. The highlighted Satisfies match indicates a
component that can be reused to solve a problem. The goal of behavior adaptation is to alter the behavior of a
component so that it matches under a condition at least as strong as Satisfies. This is accomplished by
associating a composition architecture and a heuristic for instantiating the architecture with each matching
condition.

Table 1 shows which matches each architectures is associated with and the instantiation rule for the match.
Justification of the rules can be see by attempting to apply the architectures in the different situations [18].
For example, if a component matches under Plug-in Pre, it does not help to combine it with another
component using the parallel or alternate architectures; the ``missing'' component is identical to the original
problem. However, putting the component in the first position of a sequential architecture allows the
derivation of a missing component specification that accepts the valid outputs of the first component and
produced valid problem outputs.

   

Table 1: Adaptation Architectures Associated with Matching Conditions

 

Discussion

The framework embodies several techniques that limit search by avoiding designs that will either not provide
the correct functionality or not terminate in existing library components. The main technique is the
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generation of matching conditions based on specialized adaption tactics. This leads to the selection of
problem decomposition strategies that generate subproblems corresponding to library components. Problem
decomposition strategies that do not lead to existing components (and are therefore dead-ends from a reuse
perspective) are not discarded.

The framework limits the application of automated reasoning by confining it to two situations: 1) verifying
component matches and 2) generation of subproblem specification during behavior adaptation. In addition,
the search over the solution space is guided by the relationship of components to the problem, similar
problems as determined by interface adaptation tactics, and the heuristics for instantiation the behavior
adaptation tactics. Together, these tactics direct the search toward solutions that reuse components in library.

In the case where a large number of components are retrieved for a query, the match hierarchy can be use to
select components for adaptation. In general, the closer a match is to Satisfies match, the sooner it should be
selected for adaptation. The components requiring interface adaptation should only be considered after
components that match the same way, but do not require interface adaptation.

A limitation of the framework is that the size (meaning level of abstraction or granularity) of the components
in the library determines the size of the problems that can be solved by the system. The problem must be of
similar size as the components in the library, because it is immediately compared to the components in the
library. The adaptation tactics may allow the bridging of one or two abstraction levels (for example, the
combination of a type conversion and a sequential composition might be considered two abstraction levels).
However, large problems might require several levels of decomposition before reaching the abstraction level
of the components. This limitation could be relaxed by allowing a few rounds of purely top-down problem
decomposition before attempting the bottom-up component retrieval and adaptation. However, this would
increase the search space proportional to the number of problem decomposition alternatives considered.

 

4 Comparison

The main contribution of this work is the development and evaluation the use of specification matching
results to select component adaptation strategies. This builds upon the large body of research that has
investigated specification-based (or deductive) component retrieval [5, 6, 7, 9, 10, 15, 16, 20, 25, 31]. The
framework extends the traditional type abstraction/specialization adaptation paradigm [8] by adding interface
and behavior adaptation.

Behavior adaptation is an extension of the work done on Kestrel's Interactive Development System
(KIDS) [26, 27, 11]. In KIDS, the structure of specific algorithms such as global search or divide and
conquer are represented algorithm theories. The generalization in REBOUND is that adaptation tactics are
specified in terms of subcomponent problem theories rather than operators, allowing the construction of
hierarchical systems.

The Inscape [23] environment developed by Perry uses a formal model of software interconnection [22].
Predicates are used to define preconditions and postconditions and obligations for functional components.
Predicates are propagated throughout the system to support analysis and evolution, but not verification. The
emphasis is on pragmatic use of specifications, therefore, the specification language is limited to
conjunctions of predicates. The Inscape semantic interconnection model has recently been integrated into the
GenVoca software system generators [1]. The REBOUND framework can be distinguished from these
systems in several ways. First, the specification language is type first-order logic. Second, there is a
distinction made between components and adaptors/architectures. This structure aids in the application of
heuristic knowledge in guiding the construction of a system. The relationship between GenVoca and
REBOUND is a point that deserves further study.
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